Printed Pages – 5

Roll No.:....

верин Lasanian 333652(33) «Нег и fujvy» ш

B. E. (Sixth Semester) Examination, April-May 2020

prismi takini ritotici.

(New Scheme)

(Information Technology Engg. Branch)

INFORMATION THEORY & CODING

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: All questions are compulsory. Part (a) is compulsory and attempt any two from (b), (c) and (d).

1. (a) Define uncertainty.

2

(b) What is entropy? Derive formula for entropy and show that the Entropy is maximum when all the messages are equi-probable, Assume M = 2.

7

(c) Draw the block diagram of Communication System and explain each block.

7

7

2

7

7

- (d) An analog signal is band limited to B Hz and sampled at nyquist rate. The samples are quantized into 4 Levels. Each level represents one message. Thus there are 4 messages. The probabilities of occurance of these 4 level are $P_1 = P_4 = 1/8$ and $P_2 = P_3 = 3/8$. Find out information rate of the
- **2.** (a) Define rate of information transmission across the channel.
 - (b) What is Mutual Information? Prove that :
 - (i) I(X, Y) = H(X) H(X/Y)

source.

- (ii) I(X, Y) = H(Y) H(Y/X)
- (c) Encode the following messages with their respective probability using Shanon-Fano Coding Algorithm.

M_{\parallel}	M_2	M_3	M ₄	M_5	M_6	M_7	M_8
1/4	1/8	1/16	1/16	1/16	1/4	1/16	1/8

Calcuate the efficiency of coding and comment on the result.

(d) Apply Huffman coding Procedure for the following message ensemble:
[X] = [x₁, x₂, x₃, x₄, x₅, x₆, x₇]
[P] = [0.4, 0.2, 0.12, 0.08, 0.08, 0.08, 0.04]
Take M = 2 and find the efficiency of the code.

131

- 3. (a) State channel capacity theorem.
 - (b) Write short notes on: (any three)
 - (i) Binary Communication Channel
 - (ii) BEC
 - (iii) Binary symmetric channel
 - (iv) State and prove the upper bound and lower bound of Entropy
 - (c) Explain the capacity of gaussian channel: Shanon-Hartley Theorem. Explain trade off between BW and signal to noise ration.
 - (d) Find the channel capacity of cascaded channel shown in fig. 1.

7

- 4. (a) What is meant by systematic and non systematic codes?
 - (b) The generator matrix for a (6, 3) Linear block code is given below. Find all the code vectors.

1 0 0 : 0 1

 $G = 0 \quad 1 \quad 0 \quad : \quad 1 \quad 0 \quad 1$

0 0 1 : 1 1 0

- (i) Find all the code vectors
- (ii) Find all hamming weights and distances
- (iii) Find minimum weight parity check matrix
- (iv) Draw the encoder circuit
- (c) Explain Syndrome decoding with example. How errors can be corrected and detected with the use of it?

| 5 |

(d) Consider the generator of a (7, 4) cyclic code by generator polynomial

$$G(P) = 1 + P + P^3$$

Calculate all the code vectors for the code in systematic form.

(a) What is error control code?

- (b) Explain convolutional code functionality.
- (c) A rate 1/3 convolutional encoder has generating vectors as $g_1 = (100)$, $g_2 = (111)$, $g_3 = (101)$.
 - (A) (i) Sketch the encoder configuration
 - (ii) Draw state diagram

Or

- (B) (i) Find output sequence for the input sequence m = 10110.
- (d) Write short note on: (any two)
 - (i) Viterbi Algorithm for Decoding of Convolutional Codes.
 - (ii) Turbo Codes
 - (iii) Trellis and State Diagram

7

7

7

333652(33)

100]

2

7

7

333652(33)